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Abstract. An integrated cognitive-based model (LEAP) and application 
(SALT) are presented. Building on a new Interlaced Micro-Patterns (IMP) the-
ory and the Alchemy/Goal Mind environment, the LEAP research improves 
agent-to-human and agent-to-agent communication by incorporating aspects of 
human language development. The IMP theory further provides a theoretical 
basis for deep incorporation and sharing of knowledge from different sensor 
modalities. Research on LEAP points to a better understanding of human lan-
guage development and the application of this knowledge within intelligent 
multiagent applications Research with SALT points to how this research sup-
ports Smart Home applications and provides feedback to LEAP modeling. 

1   Introduction 

Many intelligent multiagent applications can be improved by an adaptive agent or-
ganization that can not only re-task existing agents, but also add new agent capabili-
ties to deal with changing requirements. While this level of agent adaptability pre-
sents a complex problem in design and construction, humans present an archetype for 
such abilities. In this article we will show how a study of one complex human skill 
(reading) can be used to drive adaptive multiagent design and how the information 
used from this study can be used in a Smart Home multiagent application. 

To study language use and learning within a reading task, a robust distributed cog-
nitive model called LEAP (Language Extraction from Arbitrary Prose) and a new 
working theory of cognition called IMP (Interlaced Micro-Patterns) are used. One 
focus of the LEAP/IMP research is to study how lexical, syntactic, semantic and 
conceptual information can be learned from a set of English language web-based 
sources. However, LEAP can also explain how language development occurs within 
the context of general cognitive development using all sensory modalities. By focus-
ing on both ability and performance within this broader context, LEAP can provide 
insight into more general use and learning of cognitive skills that can be directly 
integrated into intelligent multiagent applications that serve to test the current work-
ing theories (e.g., IMP) of the models themselves. 
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LEAP is developed using the components of the Gold Seekers project depicted in 
Figure 1. Building on existing non-computational models and other research, the 
Gold Seekers project attempts to develop working theories (like IMP) that can be 
used to build modular computational models using Alchemy/Goal Mind [7]. These 
modules (or Agent Components) can be reused in other agent models to test other 
aspects of cognition or as the starting point of cognitive-based applications. The 
Smart-environment Adaptive-agent Language and Tasking (SALT) application builds 
on the our model research to explore how a dynamically constructed and tasked mul-
tiagent model can be used to allow a smart environment to better adapt to its users. 
SALT forms an integral part of the overall research by providing feedback on how 
the models handle a ‘real world’ application. 

2   Related Work 

Numerous ongoing research projects have applied machine learning techniques di-
rectly to the way a smart environment learns user preferences. The SALT application 
research is focused on adaptation through the way agents communicate and share 
tasks. For this reason we will focus our related work discussion on the LEAP model. 
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Fig. 1. Computational models are used to produce the agent components making up agents 
within a multiagent application. Components’ design, construction, testing and operation are 
supported by Goal Mind. The distribution, migration and control of component processes and 
the resulting agent multi-processes across multiple processors are supported by Alchemy. 
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The two language models that LEAP directly build upon are the TALLUS [5] and 
STRESS [6]. We will briefly contrast the current research with some other cognitive 
modeling environments and two language-related knowledge bases, before address-
ing the theory of spreading activation which is a key element in the LEAP model. 

2.1   Related Language Modeling and Capture Efforts 

A number of on-going research efforts are addressing the cognitive modeling of lan-
guage at some level. Many of these models address language within the context of 
other sensor modalities and are aimed at directly supporting an agent-based applica-
tion. LEAP attempts to; 1) be explanatory, 2) be closely tied to well know cognitive 
mechanisms such as priming, spreading activation and memory consolidation, and 3) 
directly support use of its components within multiagent applications. This makes it 
similar to models built with SOAR [8], ACT-R [1] and ACT-R/PM [3]. The major 
difference between Alchemy/Goal Mind and these other architectures is that the Al-
chemy/Goal Mind models are created out of a set of concurrent components which 
are free to use their own cognitive sub-theories with the main cognitive theory con-
trolling the method in which these components interact. This can be contrasted with 
the other environments where models are monolithic processes controlled some un-
derlying cognitive mechanism such as ACT-R’s symbolic productions and subsym-
bolic activations. 

Some multiagent efforts rely on existing language knowledge bases. Compared to 
projects like WordNet and Cyc, that attempt to capture language and concept knowl-
edge in large publicly available databases, LEAP currently has an extremely small 
database of language knowledge. For example, WordNet contains 144,309 unique 
words organized into synonym sets representing underlying lexical concepts [4]. The 
Cyc knowledge base contains almost 2 million assertions (rule and fact), 118,000 
concepts and a lexicon of 17,000 English root words [11]. Both WordNet and Cyc 
have been very instrumental in our discovery of the underlying structure of the way 
language and concept reasoning works, but this does not directly translate to making 
them useful candidates for knowledge components within an adaptive multiagent 
application. In contrast to simply using a vast store of language knowledge, LEAP is 
attempting to capture the way humans learn by the slow consolidation of knowledge 
into a complex and multifaceted representation of their surrounding world and to use 
the resulting structure of that representation to discover how we can simulate human 
development within adaptive agents. 

2.2   Spreading Activation 

Memory priming via a spreading activation mechanism is a very old concept going all 
the way back to a direct extension of the Quillian work on Semantic Memory in the 
1960’s [10]. The original theory, proposed by Collins and Lofus in 1975 proposes 
that is-a, reverse is-a (what TALLUS and LEAP calls a could-be relation), has-a and 
part-of semantic relations will be followed to activate parent, children, and other 
associated nodes within a person’s semantic network making it easier to retrieve these 
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concepts immediately after the original concept retrieval [9]. Several psychology 
experiments in the 1970’s and later demonstrated that the priming effects proposed by 
the spreading activation mechanism were observable [2]. 

While symbolic AI systems have focused mostly on the priming aspects of spread-
ing activation, a number of connectionist systems have also explored the effect of 
lateral inhibition where the activation of a concept can cause the retrieval of related 
concepts to be blocked for a period of time after that activation. Psychology experi-
ments appear to show that lateral inhibition works with spreading activation to allow 
us to more quickly determine that some statements are counter-to-fact [10].  

The most mature cognitive modeling treatment of spreading activation to date is 
seen in the ACT-R architecture which uses production rules, not a classic semantic 
network, in its primary knowledge representation. Other semantic network based 
systems that use it tend to do something similar to ACT-R by calculating the amount 
of activation for a node based on its distance from the activated node, and then using 
the resulting number to artificially control the lookup between nodes during infer-
ence. As will be shown later, we will take a radically different approach to simulation 
spreading activation in the LEAP model. 

3   Interlaced Micro-Patterns (IMP) Theory 

Pattern matching as an important mechanism in the learning, retrieval and recall of 
simple concepts and procedures have been accepted in both machine learning and 
cognitive psychology research for some time. The Interlaced Micro-Patterns (IMP) 
cognitive theory extends the traditional pattern matching mechanism by proposing 
that if a set of simple patterns are interlaced (i.e., allowed to overlap), the mechanism 
can be used to learn, retrieve and recall elements of far greater complexity, and thus, 
could be the driving mechanism of such tasks as language use and learning. The sup-
port for IMP as a working theory comes from both a set of thought problems and the 
results of cognitive modeling work.  

The first language model using what would become Alchemy/Gold Mind was 
TALLUS which was designed to study telegraphic speech (the second true language 
development phase in humans) within a visual context. Like most language models, 
TALLUS used a standard generative linguistic theory that proposed that utterances 
are generated by phrase structure rules that result in the utterance being associated as 
the leaf nodes of a hierarchical tree structure starting from a root node utterance or 
sentence. Given a set of generative rules, TALLUS could easily learn new surface 
forms and their associated concepts, but no believable explanatory mechanism for 
learning new syntax and their associated conceptual grids could be found. 

This model failure resulted in the first thought problem. Why do children find it 
much easier to learn a natural language than the proposed grammar rules that are 
suggested to define such a language? Hierarchical syntactic approaches to natural 
language (NL) align well with the way NL grammars are taught in traditional educa-
tional settings, but not with how language development naturally occurs. The teach-
ing of prescriptive grammars may help to stabilize language use across a group of 
language users, but it seldom controls the complete use of either spoken or written 

242     Hannon Ch.



language ‘rules’ in that group with much of that use being driven by either a con-
scious or unconscious violation of the prescriptive rules. Many non-generative lin-
guistic theories use this same argument to dismiss generative approaches, but these 
theories seldom provide a mechanism that could be used in a computational model of 
language. 

So, is there a way to capture the computational strength of generative grammar 
without it being driven by a hierarchical set of rules? One possible method to do this 
is to use interlaced micro-patterns. While all possible well-formed utterances conform 
to some syntactic, semantic and conceptual pattern, the storage of every possible 
utterance pattern would clearly be too computationally complex to be feasible. How-
ever, if all possible sentence patterns were made up of smaller patterns that relied on 
overlapping elements to ensure correctness, a set of smaller patterns could not only 
generate correct utterances, but also block the creation of malformed utterances. 

To test this approach, the LEAP model was constructed, which has confirmed the 
viability of the IMP theory for language learning. Further, it has introduced two new 
questions. Could the IMP theory supply an underlying mechanism for all cognition? 
And, could differences in the potential size of micro-patterns and their ability to inter-
lace be an underlying control in the level of cognitive abilities exhibited by a biologi-
cal organism? 

3.1   IMPs Relationship to Symbolic AI 

It is fairly simple to see how the IMP theory would map to a connectionist approach 
since the patterns can simply be distributed among the weights of connections; how-
ever, Alchemy/Gold Mind is basically a symbolic AI approach so we need to address 
the symbolic mapping a little further. Due to the large amount of existing research 
with different Knowledge Representation and Reasoning (KRR) methods, what we 
do not want is a theory that limits the types of symbolic reasoning possible within an 
application. Luckily, it can be shown that using the IMP theory as an overall control 
mechanism does not require such a limitation. 

In summary, we can define a system’s composite KRR as a set of layered compo-
nent KRRs with each component’s KRR being any desired type. This composite KRR 
can be stored in Long Term Memory (LTM) and access points within each layer can 
be activated into Short Term Memory (STM) by a pattern input from an external 
source (either another layer within the agent or an interface to the external world). In 
addition to the actual access points activated, other parts of the layer’s KR can be 
activated by a temporal-based spreading activation mechanism when needed and 
deactivated by removal from the STM when the knowledge is ‘timed-out’. Changes 
to the KRR can occur by updating the KR stored in LTM as a result of changes that 
occur in STM during activation.  

A simple formalization of the effect of using IMP to control a layered KRR can be 
given if we simplify the KR of an agent to a uniform set of semantic networks. Each 
of these semantic networks can be viewed as a directed multi-graph,  

Rn = pair (Νn , Αn ), Αn = {(νni , νnj) | νni , νnj ∈ Νn} (1) 
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where, n is the level of representation, Νn is a set of nodes, and An is a bag of named 
relationships between these nodes. A sub-representation of this network can be de-
fined as, 

R′n = pair (Ν′n , Α′n ), Ν′n ⊆ Νn , and 
Α′n ⊆ Αn ∧ ((νni , νnj) ∈ Α′n → νni , νnj ∈ Ν′n). 

(2) 

All possible sub-representations at a level n is, of course, the power set of Rn; how-
ever, this set has little meaning in the IMP theory since only the activated 
subrepresentations are of interest. Given all possible activated sub-representations at a 
level n, defined as,  

Φn = {R′n | R′n ⊂ Rn ∧ active(R′n) → True}, (3) 

connections between representation levels can also be viewed as a directed multi-
graph, 

Κi, j = pair (Φi,j , Γi,j), Φi,j = R′i ∪ R′j, and 
Γi,j = {(R′i , R′j) | R′i , R′j ∈ Φi,j }, 

(4) 

where, i and j are levels of representation being connected and Γi,j is a set of named 
relationships between these levels. 

The number of representation levels (Rn) and number of level connections (Κi,j) 
can vary based on application. A traditional agent-based method for using the overall 
representation structure would be a set of m stacks of representation levels 1 to k with 
the top-level (level 1) of each stack being an interface representation and the kth level 
of each stack being either a common conceptual structure or a set of connected con-
ceptual structures.  

Given a set of available general inference rules at each level (ρn) and between two  
levels (ρi,j), the extent of general inference at each level (ιn) and across levels (ιi,j) can 
be naively described as, 

ιn ≈ | ρn | and ιi,j ≈ | ρi,j |, (5) 

assuming no serious difference exist in the number of pre and post conditions of each 
rule. The total extent of representation at each level also can be naively described as, 

γn ≈ | Νn | • max {νni , νnj}d(νni , νnj), (6) 

which given the amount of accessible (or activated) knowledge at each level being 
βn = ∪Φn, leads to an activated representation extent of, 

αn ≈ | βn | • max {νni , νnj}d(νni , νnj) | νni , νnj ∈ βn and 
αi,j ≈ | Φi,j | • max {R′i , R′j}d(R′i , R′j). 

(7) 

The activation potential at any level can be described as, 

ηn ≈ Σ{i = 1 to k} αi,j • ιi,j , (8) 

and its inference potential as, 
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κn ≈ αn • ιn . (9) 

Assuming that we only allow a pattern matching activation mechanism to work be-
tween levels, the extent of cross-layer general inference (ιi,j) can be viewed as ap-
proaching the value one for all levels. Thus, the activation potential of all levels be-
comes approximately equal to their part of the cross-layer activated representation 
extent, αi,j, which is simply their own activated representation extent αn. Thus, a pat-
tern matching interface between layers reduces the overall inference potential in each 
layer to a function of the number of activated access points and its own inference 
extent. To the outside world, any results of a layer’s inference engine look like an 
Artificial Neural Network’s (ANN) forward or backward activation potentials. 

4   The LEAP Model 

The LEAP model is a distributed model for learning lexical, syntactic, semantic and 
conceptual information about English from web-based sources. It is currently made 
up of twenty Goal Mind components (each a multithreaded LINUX process) built on 
the environment’s production system and semantic network libraries and its standard 
PostgreSQL ‘C’ language interface. 

At the surface language layer, LEAP uses a set of seven lexical analyzers and a 
special purpose Stimuli Routing Network (SRN) used to filter some closed catego-
ries. It can discover new instances of open part-of-speech (PoS) categories and new 
patterns of word use within the input utterances. The concept reasoner’s Situational 
Dependences Semantic Network (SDSM) [5] uses spreading activation to allow a 
very large network to exist in compressed form in the PostgreSQL database (simulat-
ing Long Term Memory or LTM) while small pieces of the network can be uncom-
pressed into a dynamic memory structure within each of the concept reasoners (simu-
lating Short Term Memory or STM). 

When a word comes in from the models HMI or HTML reader, all lexical analyz-
ers look up the word in their PoS form table and send either an active or inhibit PoS 
stimulus message based on this lookup. If the word is not found (i.e., either it is not in 
the PoS form table or has too low a belief to be used), an analyzer uses reports from 
other analyzers to try to find a PoS pattern in its PoS pattern table that would indicate 
that the word may be of its PoS type. If a pattern is found, the word is either added to 
the PoS form table with a very low belief or the belief of the existing form is incre-
mented based on this example that the word matches the expected pattern. If the word 
is found but the surrounding words’ PoS do not match an existing pattern, a pattern is 
either added to PoS pattern table with a very low belief or the belief of the existing 
pattern is incremented based on this example of a valid pattern. 

When a concept is looked up, it is copied from the database (LTM) to the dynamic 
memory (STM) of a concept reasoner and given the maximum time to live by setting 
its countdown timer to the maximum allowed value. In addition, all other nodes con-
nected via a set number of outbound relations are also activated (moved to memory) 
and given a time to live based on their distance from the concept that was directly 
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accessed. The concept reasoner is only allowed to inference across active nodes, but 
when it makes a valid connection between two concepts, it both reports the finding 
and resets the time to live values for all nodes in the inference path. Running in the 
background of each concept reasoner is a temporal collector that decrements the 
countdown timer of each node during each time-slice and removes any node whose 
counter alarms (hits zero) from STM. 

5   The SALT Application 

Building on the LEAP and earlier models, the SALT application explores how to 
dynamically construct and task the control system for a smart environment. It has 
long been recognized that smart environments need to learn the preferences of their 
users, but to move them from the lab to mainstream use they will also need to adapt to 
different and changing hardware environments. Each instance of a smart environment 
will need to fit into an unique location where size, cost and other factors will deter-
mine the hardware being used. These systems will need to be able to accept new 
smart components as they become available. Further, the control system must be able 
to ‘work around’ failed hardware components to ensure both user comfort and safety. 

In the current SALT application, five agents are used to test how these agents can 
learn to communicate and distribute system tasking using a simplified language based 
on human language lexical, syntactic and semantic constructs. Using seventy-two 
Goal Mind components, the model current focuses more on language use than the 
interface to system hardware or the smart environment control, but past Goal Mind 
research indicates that more robust hardware interfaces and control structures can be 
added by less than doubling the number of processes in these agents. Running an 
application with about hundred and fifty processes is well within the capacity of Al-
chemy to handle on a relatively small Beowulf cluster. 

In the current SALT model, a Control and Human Interface agent provides both 
the Human Machine Interface (HMI) and overall smart environment task distribution. 
A Kitchen agent controls kitchen appliances and provides meal planning and food 
inventory control. An Entertainment agent controls entertainment equipment and 
provides setup based on user preference. An Environmental Control agent monitors 
A/C and safety components and attempts to match user preferences to safety and 
efficiency constraints. An Inhabitant and Robot Tracking agent provides the system 
with situation awareness about mobile elements of the environment using a multiple-
camera-based vision system. 

Many aspects of the SALT application can exploit the power of the IMP theory. A 
direct application of the LEAP research in SALT is in its HMI. By integrating the 
HMI directly to the agents’ other sensor modalities, the resulting language interface 
can be very adaptive. In the future we will build on this to allow the dynamic alloca-
tions of agents within the system to support different environments and hardware 
conditions. 
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6   Initial Results and Future Work 

Both the LEAP and SALT research are presented here to provide an overview of how 
the Gold Seekers environment allows the meaningful integration of both the theory 
and application of cognitive approaches. To date, the LEAP results are better under-
stood and will be the focus of this section. 

Reading tests with the LEAP model have been conducted on a number of chil-
dren’s stories and web-based news articles. Our current focus is on the size of micro-
patterns needed for LEAP to support surface and deep structure language learning 
and use. To support testing, the learning results, which are stored in a PostgreSQL 
database are compared against a version of WordNet also store in a PostgreSQL da-
tabase. 

Current LEAP results fall into two basic categories, detailed analysis of individual 
readings and general observations about language development and the reading task. 
As expected, the current data from news articles shows that a great deal more lan-
guage priming is needed to learn at the same rate as with children’s stories. These 
have led to several general observations. First, that using IMP, there is no good way 
to short-circuit the normal development process starting with simple stories and work 
up to more and more complex articles. Second, that reading development needs input 
from other sensor modalities. 

Most of the work with children’s stories demonstrate similar results so as an ex-
ample of a detailed analysis we will focus on a single story, Robert the Rose Horse. 
The story contains approximately 1100 words and 200 utterances. This gives a mean-
length-of-utterance (MLU) of about 5.5. Ignoring closed categories, the vocabulary is 
about 90 words. From this and other children’s stories studied, it is clear that authors 
focus on the reduction of word length, lexical complexity and the MLU, but do not 
necessarily attempt to reduce the syntactic complexity of the resulting utterances. 

Using a database primed with 15 words of the core vocabulary and no patterns, 
LEAP was able to detect 26 patterns. Increasing the core vocabulary to 20 words by 
adding 5 nouns produced one additional noun pattern, while increasing the core vo-
cabulary to 22 words by adding 2 verbs produced 10 additional patterns. In all cases 
the patterns were non-conflicting between PoSs. Most patterns show a minimal 
amount of repeatability within a story, but a few are highly repeatable due to the 
prose structure of children’s stories. These differences in repeatability is not common 
in news articles. Continuing to add nouns and verbs to the core vocabulary continues 
to show the same data trend where verbs influence the number of patterns found more 
than other PoSs. As a result of the spreading activation mechanism used in the con-
cept reasoner, associations between new and exiting concepts can be more easily 
identified. In Robert the Rose Horse this method was used to learn that ‘rose’ is a 
type of ‘flower’ and ‘bank’ is a thing that can be ‘robbed’. 

Applying LEAP results to SALT is driven by earlier work with the TALLUS 
model. In TALLUS, we were able to greatly simplify the language generation task by 
focusing on telegraphic speech patterns. The agent communication in SALT currently 
relies on the same reduction in language complexity. There is clearly a point where 
using a non-formal adaptive language adds too much overhead to an overall agent, 
but a SALT-like environment is targeted for highly intelligent agents where this is not 
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a major factor. Initial work with SALT has shown that given a small shared vocabu-
lary and a set of patterns that represent a simple syntax, agents can learn a shared 
language. We are still working on each agent’s semantic ties to this language. 

Both the Gold Seekers’ toolset and the current models support the ability to dy-
namically create new agents which would allow a SALT-like application to add new 
agents as new hardware is added and support other changes to the overall environ-
ment. While this is clearly an interesting line of research, the short-term focus of both 
LEAP and SALT is in improving the integration of their language use. 

7   Conclusion 

Current work with IMP, LEAP and SALT demonstrate that they are providing valu-
able information about human language development and adaptive agent communica-
tion. As other uses of the IMP theory are explored, it is hoped that it will provide a 
general mechanism for adaptive intelligence within a multiagent environment. The 
SALT-based research should continue to provide an even better platform for testing 
the concepts proposed by the LEAP research. While the integration of the LEAP and 
SALT research paths provide complex challenges, the result of such integration ap-
pears to be worth such complexity. 
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